发布日期:
激光3D纳米打印技术获突破
文章字数:876
近日,清华大学精密仪器系教授孙洪波、副教授林琳涵课题组提出了一种全新的纳米颗粒激光3D打印技术,利用光生高能载流子调控纳米颗粒表面化学活性,实现纳米粒子间化学键合的三维装配。
研究团队在世界范围内首次应用了全新的打印原理并展示了多种不同纳米粒子的复杂三维结构和异质结构,在纳米粒子器件化领域实现了新的突破。这项技术实现了超越光学衍射极限的高精度激光微纳制造,打印点阵列密度超过20000ppi,为超高分辨功能器件的制备提供了新思路。
纳米科学与技术作为21世纪最热门的研究领域之一,对当前集成化、智能化发展有着重要推动作用,无论是在先进电子设备,还是生物医学检测等领域,都随处可见纳米技术的应用。
这些前沿应用背后的原理是基于材料尺寸减小至纳米尺度所产生的一系列奇特的物理、化学新效应,包括半导体材料中的量子限域效应与量子隧穿效应、金属材料出现的表面等离激元共振等。
研究团队提出了光激发诱导化学键合的新原理,实现了纳米粒子的激光三维装配技术,以各种纳米粒子作为原料来组装三维纳米器件。以核壳结构的半导体量子点为例,利用激光激发量子点产生电子-空穴对,通过能级匹配,驱动光生空穴的隧穿和表面迁移,促使量子点表面配体脱附并形成活性化学位点,进而诱导量子点的表面化学成键,实现量子点之间的高效组装。
与现有的激光3D纳米打印技术相比,这项技术突破了光聚合的原理限制,不需要任何光学粘合组分,实现了接近100%功能纳米粒子组分的3D打印。
同时,该项技术凭借超强的三维加工能力,能够实现复杂线性、弯曲和体结构等多种三维结构的纳米打印,从而用于构造新功能三维光电器件。
此外,以不同尺寸的量子点作为原料,这项技术展示了多组分的异质复合打印能力,且利用非线性光激发,使打印分辨率突破光学衍射极限,打印点阵列密度超过20000ppi,打印极限分辨率达到77nm,有助于实现超高分辨率显示器件,推动VR领域的发展。
光激发诱导化学键合的微纳制造原理具有广泛的材料和结构适应性,通过能级设计可以实现多种半导体、金属材料的高精度微纳制造,开辟了纳米器件制备工艺新途径,在片上光电器件集成、高性能传感材料等领域具有重要的应用前景。 (陈彬)
研究团队在世界范围内首次应用了全新的打印原理并展示了多种不同纳米粒子的复杂三维结构和异质结构,在纳米粒子器件化领域实现了新的突破。这项技术实现了超越光学衍射极限的高精度激光微纳制造,打印点阵列密度超过20000ppi,为超高分辨功能器件的制备提供了新思路。
纳米科学与技术作为21世纪最热门的研究领域之一,对当前集成化、智能化发展有着重要推动作用,无论是在先进电子设备,还是生物医学检测等领域,都随处可见纳米技术的应用。
这些前沿应用背后的原理是基于材料尺寸减小至纳米尺度所产生的一系列奇特的物理、化学新效应,包括半导体材料中的量子限域效应与量子隧穿效应、金属材料出现的表面等离激元共振等。
研究团队提出了光激发诱导化学键合的新原理,实现了纳米粒子的激光三维装配技术,以各种纳米粒子作为原料来组装三维纳米器件。以核壳结构的半导体量子点为例,利用激光激发量子点产生电子-空穴对,通过能级匹配,驱动光生空穴的隧穿和表面迁移,促使量子点表面配体脱附并形成活性化学位点,进而诱导量子点的表面化学成键,实现量子点之间的高效组装。
与现有的激光3D纳米打印技术相比,这项技术突破了光聚合的原理限制,不需要任何光学粘合组分,实现了接近100%功能纳米粒子组分的3D打印。
同时,该项技术凭借超强的三维加工能力,能够实现复杂线性、弯曲和体结构等多种三维结构的纳米打印,从而用于构造新功能三维光电器件。
此外,以不同尺寸的量子点作为原料,这项技术展示了多组分的异质复合打印能力,且利用非线性光激发,使打印分辨率突破光学衍射极限,打印点阵列密度超过20000ppi,打印极限分辨率达到77nm,有助于实现超高分辨率显示器件,推动VR领域的发展。
光激发诱导化学键合的微纳制造原理具有广泛的材料和结构适应性,通过能级设计可以实现多种半导体、金属材料的高精度微纳制造,开辟了纳米器件制备工艺新途径,在片上光电器件集成、高性能传感材料等领域具有重要的应用前景。 (陈彬)